Injectable and macroporous calcium phosphate cement scaffold.

نویسندگان

  • Hockin H K Xu
  • Michael D Weir
  • Elena F Burguera
  • Alexis M Fraser
چکیده

Calcium phosphate cement (CPC) can be molded and self-hardens in vivo to form resorbable hydroxyapatite with excellent osteoconductivity. The objective of this study was to develop an injectable, macroporous and strong CPC, and to investigate the effects of porogen and absorbable fibers. Water-soluble mannitol was used as porogen and mixed with CPC at mass fractions from 0% to 50%. CPC with 0-40% mannitol was fully extruded under a syringe force of 10 N. The paste with 50% mannitol required a 100-N force which extruded only 66% of the paste. At fiber volume fraction of 0-5%, the paste was completely extruded. However, at 6% and 7.5% fibers, some fibers were left in the syringe after the paste was extruded. The injectable CPC scaffold had a flexural strength (mean+/-sd; n=5) of (3.2+/-1.0) MPa, which approached the reported strengths for sintered porous hydroxyapatite implants and cancellous bone. In summary, the injectability of a ceramic scaffold, a macroporous CPC, was studies for the first time. Processing parameters were tailored to achieve high injectability, macroporosity, and strength. The injectable and strong CPC scaffold may be useful in surgical sites that are not freely accessible by open surgery or when using minimally invasive techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer

This study deals with the effect of gelatin on physical and mechanical properties of  calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...

متن کامل

Preparation of an Injectable Macroporous α-TCP Cement

One of the most important characteristics of calcium phosphate cements is their resorbability when implanted in the body. However, the in vivo resorption rate is slow due to the lack of intrinsic open porosity. In this study, macroporous structures were obtained by mixing alpha-tricalcium phosphate (α-TCP) cement with a foamed liquid phase containing different concentrations of sodium hydrogen ...

متن کامل

Introduction of gelatin microspheres into an injectable calcium phosphate cement.

For tissue engineered bone constructs, calcium phosphate cement (CPC) has a high potential as scaffold material because of its biocompatibility and osteoconductivity. However, in vivo resorption and tissue ingrowth is slow. To address these issues, microspheres can be incorporated into the cement, which will create macroporosity after in situ degradation. The goal of this study was to investiga...

متن کامل

An injectable cement: synthesis, physical properties and scaffold for bone repair.

UNLABELLED Micro-invasive bone grafting is to deliver bone graft materials to the desired site through local puncturation and injection. It has many advantages such as little injury, simple procedures and high efficiency of osteogenesis. Limited sources of graft materials and complicated procedures are the main factors affecting the development of the technique. Therefore, to prepare a stable, ...

متن کامل

CALCIUM PHOSPHATE CEMENT: STUDY OF (BETA-TRICALCIUM PHOSPHATE, DICALCIUM PHOSPHATE AND CALCIUM CARBONATE SYSTEM

Calcium phosphate cements (CPCs), using B-tricalcium phosphate (ß-TCP, Ca3 (P04)2), dicalcium phosphate (DCP, CaHP04), calcium carbonate (Ca CO3), and hydroxylapatite (HAp, Ca10(P04)6(OH)2) as powder cement and disodium hydrogen phosphate (Na2HP04) solution as liquid component were prepared. After mixing the powder and liquid constituents, injectable and self-setting calcium phosphate cements (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 27 24  شماره 

صفحات  -

تاریخ انتشار 2006